Measurement and Verification

Case Studies, Issues, and Recent Developments

David Jump, Ph.D., P.E.
Principal, QuEST
djump@quest-world.com
www.quest-world.com

Overview

- Markets for M&V
- M&V Concepts and Methods
- Issues
- Case Studies in EBCx Projects
- New Protocols
- New M&V Tool Project

M&V Markets

- EE program implementation
- EE program evaluation
- Research
- Performance Contracts
- Future?
 - Superior Energy Performance Certifications
 - Industrial
 - Commercial
 - Carbon Credits/Trading

Savings Calculations (ex-ante)

Baseline Operation w/ IGV D
Proposed Operation
w/o IGV, w/ VFD High Limit & w/ VFD Modulation

Air	Speed	IGV	Power	Annual	Air	Speed	VFD	Power	Annual
Volume		Power		Energy	Volume	w/ VFD	Power	w/ VFD	Energy
Flow Rate		Ratio		Use	Flow Rate	Modulation	Ratio	Modulation	Use
Profile		[Note 1]			Profile		[Note 2]		
%	%	%	kW	kWh/Yr	%	%	%	kW	kWh/Yr
100%	100%	109%	12.8	51	100%	89.3%	71%	9.1	36
98%	100%	105%	12.3	74	98%	87.6%	68%	8.4	50
96%	100%	102%	12.0	96	96%	85.9%	64%	7.7	62
94%	100%	99%	11.6	267	94%	84.2%	63%	7.3	168
92%	100%	96%	11.3	362	92%	82.6%	60%	6.8	218
91%	100%	93%	10.9	436	91%	80.9%	57%	6.2	248
89%	100%	90%	10.6	244	89%	79.2%	56%	5.9	136
87%	100%	87%	10.2	602	87%	77.5%	53%	5.4	319
85%	100%	85%	10.0	750	85%	75.8%	50%	5.0	375
83%	100%	84%	9.9	782	83%	74.1%	49%	4.9	387
81%	100%	83%	9.7	1,358	81%	72.5%	46%	4.5	630
79%	100%	81%	9.5	1,055	79%	70.8%	44%	4.2	466
77%	100%	80%	9.4	808	77%	69.1%	43%	4.0	344
75%	100%	78%	9.2	1,003	75%	67.4%	40%	3.7	403
74%	100%	77%	9.0	801	74%	65.7%	38%	3.4	303
72%	100%	76%	8.9	454	72%	64.0%	37%	3.3	168
70%	100%	74%	8.7	835	70%	62.3%	34%	3.0	288
68%	100%	73%	8.6	774	68%	60.7%	32%	2.8	252
66%	100%	73%	8.6	697	66%	59.0%	30%	2.6	211
64%	100%	71%	8.3	1,212	64%	57.3%	28%	2.3	336
62%	100%	70%	8.2	869	62%	55.6%	26%	2.1	223
60%	100%	69%	8.1	1,013	60%	53.9%	24%	1.9	238
58%	100%	68%	8.0	1,048	58%	52.2%	23%	1.8	236
57%	100%	67%	7.9	940	57%	50.5%	21%	1.7	202
55%	100%	66%	7.8	562	55%	48.9%	19%	1.5	108
53%	100%	65%	7.6	1,284	53%	47.2%	19%	1.4	237
51%	100%	65%	7.6	958	51%	45.5%	17%	1.3	164
50%	100%	65%	7.6	1,041	50%	44.7%	16%	1.2	164
50%	100%	65%	7.6	1,467	50%	44.7%	16%	1.2	232
50%	100%	65%	7.6	631	50%	44.7%	16%	1.2	100
50%	100%	65%	7.6	509	50%	44.7%	16%	1.2	80
50%	100%	65%	7.6	456	50%	44.7%	16%	1.2	72
50%	100%	65%	7.6	319	50%	44.7%	16%	1.2	50
50%	100%	65%	7.6	152	50%	44.7%	16%	1.2	24
50%	100%	65%	7.6	122	50%	44.7%	16%	1.2	19
50%	100%	65%	7.6	122	50%	44.7%	16%	1.2	19
50%	100%	65%	7.6	84	50%	44.7%	16%	1.2	13
50%	100%	65%	7.6	122	50%	44.7%	16%	1.2	19
50%	100%	65%	7.6	23	50%	44.7%	16%	1.2 9.1	4 7 602
			12.8	24,379				9.1	7,603

Savings = 24,379 - 7,603 = 16,776 kWh annually

Note:

- estimate is prior to install
- accurate?
 - o data quality
 - o analysis
 - \circ assumptions

Measurement and Verification

 Savings are determined from measurements of energy use before and after ECMs are installed, and adjusted to a common set of conditions.

M&V Concepts and Methods

- Guidelines
 - IPMVP (www.evo-world.com)
 - ASHRAE Guideline 14 (www.ashrae.org)
- Options (IPMVP)
 - Option A: Retrofit Isolation
 - Key Parameter Measurement
 - Option B: Retrofit Isolation All Parameter
 - All Parameter Measurement
 - Option C: Whole Building
 - Option D: Calibrated Simulation

Focus on Building Systems

Measurement Boundary

- Whole Building
 - includes all systems
 - data from main utility meters

- System
 - chiller, CHWP, tower, CWP, HWP, supply & return fans
 - data from submeters, EMS, loggers

IPMVP Requirements – 2 parts

- 1) Verify potential to perform (operational verification)
 - ECMs are installed correctly
 - Operate correctly
 - Have potential to generate savings

2) Verify actual performance (quantify savings)

Quantifying Savings

IPMVP Chapter 3:

Energy Savings = Baseline Energy Use — Post-Retrofit Energy Use ± Adjustments

- Adjustments are:
 - Routine
 - Non-Routine

Routine Adjustments

 Normal and expected variations in energy use due to operating conditions, weather, normal production rates, etc.

Equation becomes:

Energy Savings = Adjusted Baseline Energy

- Post-Installation Period Energy
- ± Non-Routine Adjustments

Graphical Concept

QUANTUM ENERGY SERVICES & TECHNOLOGIES, INC.

Models

- Baseline energy use is modeled
 - Predictive or empirical models
- Model determines what baseline use would have been under post-install conditions
- Measured post-install use is subtracted from adjusted baseline to calculate <u>Avoided Energy Use</u>
- Normalized Savings are calculated from baseline and postinstall energy use under different conditions
 - e.g. typical meteorological year (TMY)
 - requires post-install model as well

Non-Routine Adjustments

- Energy use (or lack of) due to non-routine events, occupancy or equipment changes, etc.
- Examples:
 - Tenant moving in or out
 - Chiller failure and replacement
 - New building loads (office eqp., servers, etc.)
- Remove impact from adjusted baseline
 - Requires measurements & analysis

More IPMVP Requirements

- Collect data through one cycle of operation, or for all modes of operation
 - Baseline and post-installation periods
 - for buildings, does this mean one year?

- Report savings for measurement period only
 - no extrapolation

Issue

- Ex-Ante Savings Conundrum Who is Right?
 - Peer review
 - Owner's representative
 - EE implementers & evaluators
- Standardize to M&V one methodology
 - Before-after measurements
 - Acceptable adjustments
 - Was correct data collected, procedure followed?

Case Studies - Context

- Early (2003) BTU program evaluation results not good
 - Poor realization rates (~50%)
 - Savings calculations
 - Persistence
 - EBCx programs not cost-effective
- Monitoring Based Commissioning Program Projects (2004 - present)
 - Integrated M&V with EBCx projects

Case Study #1 – Soda Hall

- UC Berkeley's Computer Science Department (24/7 operation)
- 109,000 ft²
- Central Plant (2 215 ton chillers & associated equipment)
- Steam to hot water heating
- 3 Main VAV AHUs,
 - AHU1 serves building core,
 - AHUs 3 and 4 serve the perimeter, with hot water reheat

Soda Hall Findings

			Savings					
System	Measure No.	Description	Implementation Date	Energy, kWh/yr	Energy, Ibs/yr	Dollars, \$/yr	Cost, \$	Payback, yr
,	AHU1-2	Resume supply air temperature reset control and return economizer to normal operation	10/25/2006	129,800	266,250	\$19,004	\$1,550	0.1
AHU1-3	Repair/replace VFDs in return fans	10/25/2006	34,308		\$4,460	\$7,000	1.6	
	AHU1-4	Reduce high minimum VAV box damper position	3/9/2006	46,300	119,300	\$6,973	\$15,250	2.2
AHU3-2 & AHU4-2 AHU3-3 & AHU3-3 & AHU4-3		Option 2: Reduce high minimum VAV box damper position	3/9/2006	30,600	2,328,100	\$22,603	\$17,250	0.8
		Re-establish scheduled fan operation and VAV AHU-3 (includes repair/replace VFD on return fan EF-17), AHU-4 (includes repair/replace VFDs on supply SF-18 and return EF-19 fans, and elimination of low VFD speed setting during the day)	40/05/0000	242,000		\$31,460	\$14,000	0.4
		Total		483,008	2,713,650	\$84,500	\$55,050	0.7
			Percentage Savings	10%	51%	14%		

Utility Data

Steam

Electricity

Cost

5,325,717

4,871,678

\$621,575

lbs

kWhr

M&V Approach for Soda Hall

- Resources:
 - Whole-building electric and steam meters present
 - EMS that trends all points at 1 min (COV) intervals
 - 6-month history of data
- EBCx measures in AHU and Chilled Water Systems
 - Electric and steam savings
- Building has very high EUI
 - unsure if can "see" savings at whole building level
- M&V Approach: Regression Modeling
 - Option B applied at systems level (electric only)
 - Option C whole building level (electric and steam)

Baseline Model: Soda Hall

Building Electric

Building Steam

Peak Period Electric

HVAC System Electric

Soda Hall M&V: HVAC Systems

Soda Hall: Estimated vs. Verified Savings

	Estimated	Verified Savings**					
Source	Savings*	Whole Building	HVAC System				
kWh	483,008	216,716	462,472				
kW	-	22	50				
Lbs. Steam	2,713,650	854,407					

^{*} based on eQUEST model

^{**} based on baseline and post-installation measurements and TMY OAT data

Case Study #2 – Shields Library

- UC Davis Undergraduate Library
- 400,072 ft²
- 5 electric meters
- Chilled Water and Steam provided by campus central plant
 - 2 CHW service entrances, variable volume
 - 2 steam meters to 3 HW services (3 HX)
- 11 AHU, 3 VAV, 8 CAV

Shields Library RCx Findings

System	Description of Deficiencies/Findings						
AC01 & AC02	 Excessive fan speed due to failure to meet static pressure set point Economizer malfunction Simultaneous heating and cooling in air stream 						
AC21, AC25, AC25, AC51, AC53, AC54, AH1, AH2, AH3	 Economizer Repair Economizer Control Optimization Supply Air Temperature Reset with Occupancy Schedule 						
CHW & HW Pumps	Chilled water supply temp set point reset Chilled water pump lockout Reset CHW EOL pressure set point						

• limited savings estimates prior to measure implementation

M&V Approach for Shields Library

- Whole-building meters present:
 - 5 electric meters
 - 2 CHW meters (installed as part of project)
 - 3 HW meters (installed as part of project)
- EMS that trends all points at 5 min intervals
- RCx measures in AHU, CHW and HW pumps
 - Electric, chilled water, and hot water savings
- M&V Approach:
 - Option C applied to selected meters

Shields Library: M&V Models

OAT (Deg F)

Shields Library: 480V Electric Meter Savings

Shields Library: Chilled Water Savings

Shields Library: Hot Water Savings

Costs

Building	Metering Costs	M	BCx Agent Costs	In-House Costs	Total
Soda Hall	\$ 4,442	\$	62,160	\$ 51,087	\$ 117,689
Tan Hall	\$ 22,573	\$	53,000	\$ 15,300	\$ 90,873
Shields Library	\$ 26,000	\$	96,795	\$ 57,757	\$ 180,552

Including M&V, projects remained cost-effective:

Soda Hall: 1.7 year payback

Tan Hall: 0.7 year payback

Shields Library: 1.0 year payback

Evaluated project realization rates: 105% electric, 106% gas

- Added costs of metering and M&V analysis did not overburden project costs
- MBCx approach should be viable in private sector
 - Existing electric meters
 - Sophisticated BAS systems

Outcomes of MBCx Work

- Changes to MBCx program
 - M&V required
 - 3 months data, baseline and post
- Practical Guidelines
 - California Commissioning Collaborative
 - Energy Modeling with Interval Data
 - www.cacx.org
 - Bonneville Power Administration
 - Energy Modeling Protocol
 - Other M&V protocols
 - www.conduitnw.org

Outcomes, cont.

- Market Awareness
 - UCB, UCD
 - desire to track energy use & maintain savings
 - IPMVP Committee: Monitoring and Targeting
 - "Data Mining" Companies
 - Software as a Service
 - Dashboards
- Energy Modeling Tools
 - QuEST Energy Modeling Spreadsheet
 - M&V Tool for Universal Translator
 - alpha in 2012, beta early 2013

Regression Energy Modeling Method

C B1 B2

Ambient Temp

4-parameter model (cooling)

5-parameter model

QUANTUM ENERGY SERVICES & TECHNOLOGIES, INC.

Applicability

- Whole Building Meter (one or multiple)
 - IPMVP Option C
- Building Subsystems
 - HVAC System
 - Chilled Water System
 - Etc.
 - IPMVP Option B

Model Examples

Developing Models

- General Procedure
 - Plot data
 - Select model type (1-P, 2-P, 3-P Cooling, etc.)
 - Select change point
 - Perform regressions (averages where needed)
 - Calculate CV & NMBE
 - Adjust change point
 - Perform new regressions
 - Calculate CV & NMBE, compare with run #1
 - Iterate to lowest CV & NMBE

Assess Baseline Model

- Develop different energy use models
- Select model that best fits data (low NMBE, CV)
- Run uncertainty assessment
 - Determines if model can determine savings within reasonable uncertainty
 - May need to select alternate approach
- Finalize approach
- Decide how long to measure in post-installation period (Reporting Period)
- Document in M&V Plan

Uncertainty Assessment

- ASHRAE G14, Annex B, Eqn. B-15 (also VoS Guide, cacx.org)
 - Fractional Savings Uncertainty , $\Delta E_{save,m}/E_{save,m}$

For "weather models with correlated residuals"

$$\frac{\Delta E_{save,m}}{E_{save,m}} = t \cdot \frac{1.26 \cdot CV \left[\frac{n}{n'} \left(1 + \frac{2}{n'} \right) \frac{1}{m} \right]^{1/2}}{F}$$

Uncertainty Example

Useful Software

- QuEST Change-Point Model Spreadsheets
 - www.quest-world.com
 - Excel-based, change-points, and $\Delta E_{save,m}/E_{save,m}$
- Energy Explorer
 - Automatically determines best fit of change-point models to data, makes charts, calculates savings, uncertainty, etc.
 - Source: Prof. Kelly Kissock, University of Dayton
- ASHRAE Inverse Modeling Toolkit (RP1050)
 - Purchased with Research Project 1050
 - DOS-based, source and executable files
 - Change-point models, no uncertainty calculations

Non-Routine Adjustments

Non-Routine Adjustment

- Temporary or permanent
- Energy use patterns can reveal impact
- Identify non-routine operation period
 - Investigate to determine & document cause
- Develop a model that fits the non-routine usage pattern
 - Average, 2-P, 3-P, etc.
- Subtract from baseline or post usage

Non-Routine Adjustment

Regression Method Problems

- Data hard to collect and prepare
- Modeling techniques
 - difficult & time-consuming
- Uncertainty analysis
 - difficult & time-consuming

UT M&V Tool Project

- Funded by CEC PIER
- Develop an analysis module for the Universal Translator
 - Leverage UT's data preparation capability
 - Enable complete M&V savings analysis
 - Using energy modeling method
 - Apply to whole-building or systems data

UT M&V Tool Research Questions

- Create & assess regression models
 - Applied to baseline and post-install periods
 - Usefulness of additional regression model types
 - 6-parameter
 - Polynomial
- How much data needed for model development?
- Calculate savings & uncertainty
 - For measurement period: Avoided energy use
 - Annual (extrapolation): Normalized savings

UT User Interface

QUANTUM ENERGY SERVICES & TECHNOLOGIES, INC.

Questions?

Equipment and End-Use Metering

- Inspired by ASHRAE G14 Retrofit Isolation
- Characterize baseline equipment load and schedule operation
 - Constant
 - Variable
- Determine impact of ECM on load & schedule
 - Changes load or schedule or both
- Characterize post-install operation
- Define analysis algorithms
- Identify data required
- Execute plan

Applicability

- Loads that may be isolated and measured
 - Air or water flow, heating Btu/h, cooling tons, etc.
 - Relationship to kW known or may be developed
- Model variable hours in load frequency distributions
 - # hours in load bins
- Energy flows: few or straightforward
- Negligible/ignorable interactive effects with other equipment
- Systems of multiple pieces of equipment with energy characteristics similar to single end-use

Constant Load, Constant Schedule

- Degree of "constant" defined by user
 - Coef. Variation of Standard Deviation: CV(STD) ≤ 5%
- Examples
 - Lighting under time clock control
 - CRAH unit fan 24/7 operation

Constant Load, Variable Schedule

- Load is constant, but unknown hours-of-use
- Examples:
 - Lighting controlled with occupancy sensors
 - Constant speed cooling tower fans hours vary with ambient temperature

Variable Load, Constant Schedule

- kW varies with load (cfm, ton, speed, etc.)
- Total hours constant, distributed over several load bins
- Examples
 - WW treatment blowers maintaining constant DO levels (24/7)
 - CRAC unit operation (split system, condenser on roof)

Variable Load, Variable Schedule

- Hours-of-use in each bin and total are unknown
- Examples
 - Chilled water system maintaining CHWST reset schedule
 - Industrial VFD compressed air system

Algorithm

- 1. Identify baseline operation category
- 2. Determine impact of ECM
 - a. Changes load, changes schedule
 - b. Changes load or schedule from constant to variable
- 3. Identify post-installation operation category
- 4. Select equation, define analysis procedure
- Determine relationships between load & hours-ofuse, and other parameters
 - e.g. T, cfm, gpm, speed, tons, etc.
- 6. Collect baseline and post-install data
- 7. Calculate savings

Equations – Examples

- CLTS
 - Changes load $kWh_{saved} = (Eff_{base} Eff_{post}) \cdot Q_{post} \cdot HRS_{post}$
 - Changes hours-of-use $kWh_{saved} = kW_{base} \cdot (HRS_{base} HRS_{post})$
 - Changes load from constant to variable $kWh_{saved} = kW_{base} \cdot HRS \sum_{i}^{l} \left[kW_{post,i} \cdot HRS_{i} \right]$
 - Changes hours-of-use from constant to variable

$$kWh_{saved} = kW_{base} \cdot HRS_{base} - kW_{base} \sum_{i} HRS_{post,i}$$

$$HRS_{base} \neq HRS_{post}$$
 $HRS_{post} = \sum_{i} HRS_{post,i}$

Measurement Plan

- Option A
 - measure key parameter
 - estimate non-key parameter
 - nameplate, spec., etc.
- Option B
 - measure all parameters
- Equations define data requirements
 - baseline & post-installation measurements
- Shortcuts also identified
 - If load not affected, measure once
 - Baseline or post-install period

Advantages of End-Use Protocol

- M&V is extension of methods used to calculate ex-ante savings
- Allows use of technical (not measured) info.
 (Option A)
- Many required measurements may be costeffectively obtained
- Can apply to more complicated systems, if operation characteristics same
- Can quantify savings uncertainty, if required

Disadvantages

- Not practical for multiple ECMs throughout a facility
- Does not account for savings interactions
 - e.g. cooling savings from a lighting retrofit
- Not well applied to end-uses with highly random load and schedule characteristics